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ABSTRACT
In recent years, machine learning has become more common in ev-
eryday applications. Consequently, numerous studies have explored
issues of unfairness against specific groups or individuals in the
context of these applications. Much of the previous work on unfair-
ness in machine learning has focused on the fairness of outcomes
rather than process. We propose a feature selection method inspired
by fair process (procedural fairness) in addition to fair outcome.
Specifically, we introduce the notion of unfairness weight, which
indicates how heavily to weight unfairness versus accuracy when
measuring the marginal benefit of adding a new feature to a model.
Our goal is to maintain accuracy while reducing unfairness, as
defined by six common statistical definitions. We show that this ap-
proach demonstrably decreases unfairness as the unfairness weight
is increased, for most combinations of metrics and classifiers used.
A small subset of all the combinations of datasets (4), unfairness
metrics (6), and classifiers (3), however, demonstrated relatively
low unfairness initially. For these specific combinations, neither un-
fairness nor accuracy were affected as unfairness weight changed,
demonstrating that this method does not reduce accuracy unless
there is also an equivalent decrease in unfairness. We also show
that this approach selects unfair features and sensitive features
for the model less frequently as the unfairness weight increases.
As such, this procedure is an effective approach to constructing
classifiers that both reduce unfairness and are less likely to include
unfair features in the modeling process.
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1 INTRODUCTION
Approaches to improving algorithmic fairness in the context of ma-
chine learning applications have mainly focused on three categories
of methods: pre-processing [9, 28], in-processing [17, 29, 46], and
post-processing [23]. Each proposes an intervention at a specific
stage of the machine learning process to achieve fairness, either
before, during, or after the model training process. In addition, a
fourth category of work involves ensuring that even earlier steps,
like data collection and annotation, are fair [27]. Most of these
methods focus on fair predictions and derive their assessment of
fairness by measuring outcome alone. In this paper, however, we
explore a machine learning method that modifies the fairness of
the model building process by selecting which variables may be
used when making decisions. This allows us to balance not only
the compromise between accuracy and cost in the outcome, but
also the fairness of the features used in the learning process.

The previously described approaches tend to focus specifically
on the concept of fairness. In related work outside of machine
learning, however, a distinction has been drawn between that of
fairness and unfairness. For example, Cojuharenco and Patient [13]
show that when presented with language around unfairness, peo-
ple were more likely to consider inputs and processes rather than
outcomes. Given our focus on inputs (features), we therefore use
measurements of unfairness in this paper. This allows us to measure
the reduction of unfairness as we improve processes, rather than
outcome fairness alone.

Outcome fairness is also referred to as distributive fairness, which
refers to the fairness of the outcomes of decision making, while
procedural fairness refers to the fairness of the decision making
processes that lead to those outcomes [22]. We can interpret the
idea of fair process in this context to mean building the model itself
in a way that incorporates concerns of fairness [22]. This leads
us to ask questions of the model. For example: are protected fea-
tures included? Protected features describe groups that must not
be discriminated against in a formal or legal sense, as defined by
each notion of (un)fairness [33]; examples of common protected
features are race and gender. Other demographic categories may
not be legally protected, but may still be questionable to use, such
as whether a student lives in a rural area. The combination of pro-
tected and otherwise undesirable features will together be referred
to as sensitive features in this paper. A second question wemight ask
is: are unfair features being included in decision making processes?
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Unfair features are those where one group is likely to benefit more
than another from their inclusion. Unfair features may be a proxy
for protected features (e.g., ZIP code as a proxy for race), biased due
to historical or social contexts (e.g., standardized college entrance
exam scores [37]), or otherwise statistically skewed. Of course, a
dataset may include more than one sensitive or unfair feature and
it can be difficult to determine the full set of these features. As such,
one previous approach has examined how humans rate the inclu-
sion of sensitive features, in general and when given knowledge
about how those features affect the accuracy and fairness of the
classifier [22]. In this paper we take inspiration from Grgić-Hlača
et al. [22] to move beyond distributive fairness, and examine how
automating feature selection can contribute to a fair process for
building classifiers. The value of our approach to practitioners is
that our feature selection process can avoid sensitive features that
may have been overlooked. Rather than declaring one or more
features sensitive and thus off-limits, this approach generalizes the
desired statistical measure of unfairness to ensure that each feature
selected is more fair to use.

In sum, in this paper we define a straightforward process for
building procedurally fair classifiers by incorporating both unfair-
ness and accuracy considerations during feature selection. We in-
vestigate how this process affects both accuracy and unfairness
outcomes in practice. As such, we explore how an automated fea-
ture selection process can incorporate elements of fairness in order
to improve both process and outcomes. We also specifically inves-
tigate how a fairer feature selection process affects the inclusion
of both sensitive features and unfair features in models. We ex-
plore how this approach works when applied to three commonly
used machine learning classifiers, and how it performs in terms of
both accuracy, as measured by AUC, and unfairness, as measured
by six different statistical definitions (defined in the Unfairness
Definitions section). We demonstrate that our approach gener-
ally reduced unfairness, with an inevitable reduction in accuracy
[17, 18, 22], for three real-world datasets. Additionally, for simu-
lated data, we demonstrate that our method chose both a sensitive
feature and an unfair feature less frequently. This demonstrates that
the method caused the classifier to be less likely to include sensitive
and unfair features in the decision-making process, leading to a
fairer model with regards to procedure as well as predictions.

1.1 Previous Conceptualizations of Fairness
The study of fairness in machine learning has seen a dramatic
increase because unfairness is pervasive in algorithmic decision
making [36]. As machine learning has proliferated, so have ques-
tions of its impacts [3, 11, 34]. One of the commonly studied impacts
is that of fair usage and outcomes. Much of the work evaluating the
fairness of machine learning models has focused on a variety of sta-
tistical definitions describing fair outcomes [20]. These quantitative
definitions primarily arose from fairness literature based in educa-
tional testing, but have been based in legal definitions or strictly
mathematical uses as well [25]. It has been proven that, except in
highly specialized cases, different definitions of fairness cannot all
be satisfied at the same time [11, 30]. In addition, which definition is
most applicable is often context dependent and has different impli-
cations that depend on how outcomes are measured. For example,

statistical parity is a measure of population-wide fairness, and may
not account for discrimination against specific demographics [15].
Given this constraint, and the fact that fairness is a social concept
[11], it is generally necessary for researchers and users to choose
which definitions are appropriate to apply to a given classifier and
dataset, based on the targeted fair prediction outcomes. In this pa-
per, we thus demonstrate the effect of our proposed strategy on a
variety of these fairness measures.

Our proposed strategy is based on altering the definition of
accuracy to incorporate a conceptualization of unfairness during
the feature selection process. Selecting which features to include
in a model is crucial because adding more features may lead to
worse predictions [44], in addition to increasing model complexity.
When training a classifier, then, only the “best” features should
be included in the model. How “best” is defined, however, has a
strong effect on the resulting model [41]. Past research has tended
to use “most accurate,” as defined by a specific measure of error,
as the indicator of best. However, measures of accuracy optimize
prediction outcomes based on a particular dataset, but the data
used can be unfair because it was created in an unfair world, it
is missing information, or it is otherwise unrepresentative [3, 5].
Therefore, accuracy alone is not a neutral measure of classifier value.
Merely excluding sensitive features (e.g., protected group status
like race) is not, however, a perfect remedy for fixing unfairness.
Often, removing a sensitive feature does not remove all correlated
proxy features, and even removing all of the correlated features
does not always provide an acceptable trade-off in accuracy and
fairness [33]. In addition, previous work has shown that including
seemingly “unfair” features can actually lead to better outcomes
in terms of both fairness and accuracy, since the model can then
account for past unfairness that created the initial dataset [10, 11, 30,
33]. Therefore, selecting appropriate features for a fair model is not
a simple matter of applying a pre-processing rule to the data, and
may be better accomplished by a more complex feature selection
approach.

1.2 Our Study
We propose incorporating unfairness into feature selection as an
alternative to optimizing for accuracy alone. We demonstrate an
approach to model building with classification algorithms that aims
to minimize unfairness while simultaneously maximizing accuracy
during the feature selection step. Furthermore, we trained three
classical machine learning algorithms—Gaussian naïve Bayes, logis-
tic regression, and decision trees—in order to explore the generality
of our approach.

We define the following two research questions (RQs) to explore
this problem:

RQ1: Does our proposed method reduce unfairness? If so,
according to which unfairness definitions? Addressing this
question will determine whether the method affects model pre-
dictions as expected. In particular, we assess how accuracy, as
measured by AUC, and unfairness, as defined in the Unfairness
Definitions section, are affected by our approach. We look at this
question overall as well as examining the impact across levels of
the trade-off between accuracy and unfairness.



RQ2: How does the selection of an unfair feature and the
sensitive feature affect accuracy and unfairness?We examine
simulated data to understand when the unfair feature and sensitive
feature are included during feature selection. We look at whether
this varies with different definitions of unfairness and perform
statistical tests to determine whether the sensitive group status
and an unfair feature are selected less frequently as unfairness is
weighted more heavily in the accuracy–unfairness trade-off.

Note that while we are measuring a single sensitive feature
per dataset in this paper, the approach can be applied to multiple
sensitive features—for example, by averaging unfairness metrics
for each sensitive feature during feature selection.

1.3 Related Work
As discussed above, approaches to reducing unfairness in machine
learning generally fall into three categories: pre-processing, in-
processing, and post-processing. Kamiran and Calders [28] demon-
strated four now-common approaches to pre-processing: 1) sup-
pression, which entails removing the sensitive feature and its most
correlated features from the data; 2) “massaging” the dataset, which
involves changing a strategic selection of labels in the dataset in or-
der to remove discrimination; and 3) “reweighing”, which involves
resampling instances in the dataset to make the data discrimination-
free with regards to the sensitive feature. Using these approaches,
they demonstrated that removing the sensitive feature from the
dataset does not always result in the removal of the discrimina-
tion. Massaging and resampling were more effective, “leading to
an effective decrease in discrimination with a minimal loss in ac-
curacy.” For example, they showed a decrease in discrimination
from 16.48% to 3.32% for their decision tree, while accuracy only
decreased from 86.05% to 84.3%. Similarly, Calmon et al. [9] use a
distortion function based on an unfair feature in the initial data to
create a transformed dataset. They showed that this transformed
dataset led to fairer classification, though the reduction in unfair-
ness came with an accuracy penalty. This reduction was due to the
restrictions imposed on transformation. In general, restrictions in
feature or data usage will tend to lead to a reduction in accuracy
due to a loss of information [9, 22].

The second category of approaches are in-processing, referring
to making the learning algorithm itself less unfair. Many papers
have addressed this topic [8, 15, 17, 29, 45, 46]. Fish et al. [17] use
two in-processing approaches. The first is a shifted decision bound-
ary which finds the minimal-error decision boundary shift for the
sensitive group that achieves statistical parity (equal predicted rate
for all groups). The second is fair weak learning, which is specific
to adapted boosting (a machine learning method) and replaces a
standard boosting weak learner with one which tries to minimize a
linear combination of error and unfairness. They demonstrated that
using a shifted decision boundary allows a substantial reduction in
bias before there is significant drop-off in accuracy for large enough
datasets. Zafar et al. [46] proposed a new statistical definition of
unfairness, and proceeded to train logistic regressors that were con-
strained by false positives. They were able to build a classifier that
did not use sensitive features in decision making, and still achieved
similar results to post-processing approaches like those of Hardt
et al. [23].

The final category is post-processing, which makes the model
decisions less biased after the model has been built. Hardt et al.
[23] demonstrate an example of this; they designed a simple post-
processing step that allowed them to avoid changing a complex
training pipeline and avoid loss of information from the original
data. They proposed post-processing as a last resort when better fea-
tures, and more and better data, cannot be obtained. They proposed
a new notion of non-discrimination, “obliviousness,” based only
on the joint distribution of the true target outcomes, the predicted
target outcomes, and the sensitive feature. Obliviousness does not
evaluate the features nor the functional form of the prediction al-
gorithm. They used a case study of financial risk assessment to
show that it was possible to maintain close to full profitability with
some approaches, such as a race-blind one, but that others, such as
equalized odds (equal bias and equal accuracy across all categories
of the sensitive feature), are costlier. Their findings highlight the
inherent trade-offs of fairness and accuracy, and show that differ-
ent fairness standards affect accuracy and other measurements of
success differently.

2 EXPERIMENTS AND METHODS
The approach in this paper builds on previous work, as described
above, by incorporating constraints on unfairness during the feature
selection step. In this section, we describe the method in detail, as
well as the process by which we evaluated it. We also describe the
datasets used for evaluation.

2.1 Feature Selection Approach
Our feature selection method is a form of wrapper feature selection.
In wrapper feature selection, a machine learning model is trained
with a given feature or set of features, and then a model evaluation
metric (e.g., AUC) is used as the measure of how good that particu-
lar feature set is. We specifically utilized forward feature selection.
Forward feature selection consists of training all one-feature models
(i.e., one model per feature), then choosing whichever feature was
best according to the model evaluation metric. The process then
repeats with every possible two-feature model, using the best fea-
ture from the first round and pairing it with each remaining feature.
This continues until reaching a stopping criterion: in our case, once
all features had been added to the model. Finally, we selected the
best set of features from among all those that we explored during
the feature selection process.

Our method differs from typical forward feature selection in the
model evaluation step. Typically, models (and thus feature sets)
would be evaluated based on an accuracy metric, such as AUC [26],
Cohen’s kappa [12], or another metric [41]. We instead evaluated
models based on a combination of accuracy and unfairness. Specif-
ically, we maximized 𝐴𝑈𝐶 − 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 , where 𝑤𝑒𝑖𝑔ℎ𝑡
is a hyperparameter selected by the experimenter to balance the
relationship between accuracy and unfairness, and 𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 is a
measure of inequality in the model’s predictions. We explored six
different unfairness definitions, described in the Unfairness Defi-
nitions section, which were all implemented such that they ranged
from 0 (no unfairness) to 1 (maximal unfairness). Thus, features
are selected in this method if they yielded a model that improved



accuracy while not adding a large amount of unfairness. For exam-
ple, consider a situation where one feature has a correlation with
the outcome variable in one demographic group but not another,
whereas another feature has a weaker correlation that is consistent
across groups. In this case, we expect the method will preferentially
select the latter feature.

Note that AUC, used during forward feature selection, tends to
yield models that predict positive and negative cases at rates that
differ from the original data (the base rate), versus some measures
like mean squared error and Cohen’s kappa [41]. Matching pre-
dicted rates to base rates is related to some unfairness definitions
(e.g., statistical parity), and thus there may be an interaction be-
tween choice of accuracy metric and unfairness metric. We leave
this consideration to future work, though in principle our method
works with whatever accuracy metric is suitable for a particular
problem.

We incorporated our method into existing feature selection func-
tionality in the MLxtend Python package [39], which in turn inte-
grates with the scikit-learn package [38]. Our code for all exper-
iments is publicly available1. We then evaluated the method via
machine learning experiments implemented with scikit-learn, as
described below.

2.2 Model Training
We explored three common classification algorithms: Gaussian
naïve Bayes, logistic regression, and decision trees (specifically, clas-
sification and regression trees, or CART [7]). We selected these three
as examples because they are well-known, widely-used, and vary
considerably in how theymake classification decisions. Naïve Bayes
has no inherent feature selection capabilities, and is sensitive to the
“curse of dimensionality”, wherein unnecessary features negatively
impact model predictions [19]. Hence, feature selection is a typical
step in the training process for naïve Bayes models. Similarly, lo-
gistic regression models may suffer when unnecessary features are
included, especially if those features are highly collinear [42]; hence,
feature selection is common. Logistic regression often incorporates
feature selection via L1 regularization [43], which effectively elimi-
nates features from a model by setting their weight coefficients to
0. However, logistic regression may still benefit from our feature
selection method in terms of reducing unfairness, since L1 regular-
ization does not penalize unfairness. Finally, we trained decision
trees, which are typically robust to the presence of unnecessary
features [6]. Features that are uncorrelated with the outcome can
be ignored in a decision tree, since the model may simply choose
to make branching decisions based on other features. However,
we expect that our method will reduce unfairness even if feature
selection is not otherwise needed.

We trained models with 4-fold cross-validation, in which train-
ing data came from 75% of randomly-chosen individuals, and data
from the remaining 25% of individuals were used to test the model
accuracy and unfairness. We repeated the process 4 times so that
each individual was in the test data exactly once. We repeated
each experiment 100 times with different randomly-chosen cross-
validation data partitions, then calculated means of all evaluation
metrics so that results were not influenced by the random choice

1https://github.com/pnb/fairfs/releases/tag/v0.1-aies

of training and testing datasets. We performed the feature selec-
tion method, described above, using nested 4-fold cross-validation
within training data only. That is, we further split training data
into subsets to train and evaluate the models built as part of feature
selection, thereby avoiding overfitting the feature selection step
based on testing set accuracy. Apart from feature selection, we
did not tune any classifier hyperparameters, leaving them at the
scikit-learn default settings. We expect that the key results explored
in this study would be unaffected by hyperparameter tweaks made
to classifiers, and leave such analysis to future work.

2.3 Unfairness Definitions
In this paper, we used six statistical unfairness definitions to mea-
sure unfairness in our experiments. Specifically, from among many
possible definitions, we chose the set of definitions in Berk et al.
[4].

As background for these definitions, let there exist a machine
learning classifier that predicts a set of values, 𝑌 ′, based on both
“legitimate” predictors of the outcome of interest and “sensitive” pre-
dictors, which may be legally protected, such as race, or otherwise
questionable to use, such as ZIP code. 𝑌 ′, the outcome predicted
by the classifier, is an estimate of 𝑌 , the true outcome of interest.
Let 𝑇𝑃 = true positives, 𝐹𝑁 = false negatives, 𝐹𝑃 = false positives,
and 𝑇𝑁 = true negatives, such that 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +𝑇𝑁 add up to
the sample size. The category of “true” results are when 𝑌 ′ equals
𝑌 , while “false” results are where they differ; “positive” refers to
values of 𝑌 or 𝑌 ′ that belong to a specific class (e.g., students with
above-median grade in the Student Academics dataset described
below), while “negative” refers to all other values.

Our fairness definitions are based on the relationships between
measured outcomes and ground truth. We consider only example
datasets with a binary sensitive group (e.g. Male or Female) and two
outcome classes, but we have implemented these metrics for general
multi-class, multi-group cases by taking the maximum unfairness
across classes and groups.

• Overall Accuracy Equality: achieved by a classifier when
overall procedure accuracy is the same for each category of
the sensitive feature. That is, true positives + true negatives
is the same proportion ( 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 ) for each group. We
measured unfairness with this definition by calculating the
absolute difference between proportion correct per group.
This definition is imperfect in that it does not distinguish
between accuracy for correctly identified positives and ac-
curacy for correctly identified negatives. That is, overall ac-
curacy equality assumes that true negatives are as desirable
as true positives. However, no metric can account for every
conceivable dimension of fairness, so we also evaluated other
related metrics.

• Statistical Parity: achieved by a classifier when the mar-
ginal distributions of the predicted classes are the same
for each category of the sensitive feature. That is, the pro-
portion of all positives ( 𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 ) and all negatives
( 𝐹𝑁+𝑇𝑁
𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 ) are the same for all groups. This definition
of statistical parity, sometimes called “demographic parity,”
also has flaws because it can lead to highly undesirable deci-
sions [15]. It is not necessarily valuable to force all groups to



have equivalent statistical distributions if the groups don’t
require equal treatment (e.g., recommending interventions
for students who don’t need them just to keep the num-
bers equivalent). We calculated unfairness for this definition
as the difference between the predicted rate (proportion of
positive class predictions) across groups.

• Conditional Procedure: achieved by a classifier when con-
ditional procedure accuracy is the same for each category
of the sensitive feature. That is to say, true positives versus
true positives and false negatives (actual positives; 𝑇𝑃

𝑇𝑃+𝐹𝑁 )
is the same for all groups, and true negatives versus true neg-
atives and false negatives (actual negatives; 𝑇𝑁

𝐹𝑃+𝑇𝑁 ) is the
same for all groups. In other words, when conditioning on
the known outcome, is the approximating function equally
accurate across sensitive group categories? This is the same
as considering whether the false negative rate and the false
positive rate, respectively, are the same for all groups. Thus,
we measured unfairness with this definition as the absolute
difference between recall scores across groups. Note that this
measure has a special case called “equality of opportunity”
that effectively is the same as conditional procedure accuracy
equality, but only for the outcome class that is more desirable
(e.g., positives for hiring), which may raise the question of
which outcome class is more desirable. In addition, equal-
ity of opportunity is not always a useful measure, in that it
cannot account for bias that was present at the time of data
creation [33].

• Conditional Use Accuracy Equality: achieved by a clas-
sifier when conditional use accuracy is the same for each
category of the sensitive feature. This definition is condi-
tioning on the algorithms’ predicted outcome, not the actual
outcome. That is, true positives versus true and false pos-
itives (all predicted positives; 𝑇𝑃

𝑇𝑃+𝐹𝑃 ) is the same for all
groups, and true negatives versus true and false negatives
(all predicted negatives; 𝑇𝑁

𝐹𝑁+𝑇𝑁 ) is the same for all groups.
We calculated unfairness according to this definition as the
absolute difference in precision across groups.

• Treatment Equality: achieved by a classifier when the ra-
tio of false negatives and false positives ( 𝐹𝑃

𝐹𝑁
or 𝐹𝑁

𝐹𝑃
) is the

same for all categories of the sensitive feature. The term
“treatment” is used to convey that such ratios can be a policy
lever with which to achieve other kinds of fairness. This
allows the modeler to decide how costly a wrong outcome
is for a specific category of the sensitive feature (e.g., a false
negative is worse than a false positive), which is the quality
missing from overall accuracy equality. We measured un-
fairness by whichever ratio was larger; however, unlike the
other unfairness measures, these ratios may exceed a value
of 1. Thus, we applied a sigmoid function to transform values
into the [0, 1] range like the other measures, since our fea-
ture selection method assumes the accuracy and unfairness
measures have similar scale.

• Total Average Equality: defined as the mean of the previ-
ous five equality metrics. Note that it is impossible for all
five of the preceding definitions to be satisfied at the same
time. For example, conditional procedure equality (matching

false positive and negative rates across groups) cannot be
achieved alongside statistical parity (matching positive and
negative predicted rates across groups) if the ground truth
proportion of positive or negative instances differs across
groups.

2.4 Datasets
We tested our feature selection method on four datasets. The first
three datasets are all publicly available from the UCIMachine Learn-
ing Repository, while the fourth was generated by the authors. The
Student Performance and Student Academics datasets were
collected in educational contexts, where machine learning is valued
because early prediction of student success can drive adaptations
that improve students’ learning [2, 16]. However, machine learning
models derived from such data may be unfair [21, 35], including
potential structural unfairness (e.g., predicting a student will suc-
ceed simply because of their affluence). The third dataset, Adult,
is commonly used in machine learning literature, and as such is
helpful for baseline comparisons. The fourth dataset is a simulated
dataset, which we created to explicitly test whether the feature
selection method would select a feature known to be unfair.

Student Performance: This dataset consists of person-level
survey responses from students and administrative data provided by
schools (including demographic information and students’ grades)
for two courses [14]. In this study, we analyzed data from a mathe-
matics course with 395 students, predicting whether each student’s
final grade was above or below the median. The data include predic-
tor variables like number of absences and attitudes toward school,
some of which are examples of variables that may be predictive but
which could be procedurally unfair to use for grade prediction (e.g.,
age, romantic relationship status). We extracted 33 features from
the numeric and nominal information in this dataset. We treated
students’ home community size (rural versus not rural) as the sen-
sitive feature for measuring unfairness, given previous research
showing the potential for machine learning models to generalize
poorly across these categories [35].

Student Academics: This dataset consists primarily of demo-
graphic information for students, including parental occupations,
family size, gender (only male and female), and others for 131
students [24]. In total, we extracted 22 features. Final grades are
also included, which we predicted in this study as a binary out-
come variable (above or below the median). This dataset includes
some non-demographic predictors, such as attendance records, but
includes several demographic variables with potential to induce
model unfairness if selected. As in the Student-Performance dataset,
we treated rural/non-rural status as the sensitive feature for mea-
suring unfairness.

Adult: This dataset consists of information from the 1994 U.S.
Census database [31]. This dataset contains information for 48,842
American adults, predicting whether a person earns above or below
$50K a year. In total, we extracted 22 features, after transforming
categorical features to binary features and removing infrequently-
occurring categories. The data include predictor variables like edu-
cation level, marital status, and hours worked per week, but also
include some demographic variables with potential to introduce
unfairness if selected, such as race. In this study, we treated sex as



the sensitive feature for measuring unfairness, as has been done in
past literature that uses this dataset [17, 28, 29].

Simulated Data: This dataset is artificially constructed, and
contains 1,000 rows in total. It consists of four columns: group (the
sensitive group membership status, 0 or 1), the binary outcome col-
umn, a “fair” feature (each group has a similar correlation between
this feature and the outcome), and an “unfair” feature (where the
correlation with outcome differs for group 0 and group 1). Sensi-
tive group status consisted of 500 rows each for groups 0 and 1.
We generated a normally-distributed random variable, normalized
the values in the [0, 1] range, and generated the outcome column
by rounding to 0 or 1. We then transformed the same underly-
ing normally-distributed random variable to generate the fair and
unfair features. When generating the fair feature, we randomly
replaced 300 out of 1,000 variable’s values with uncorrelated values.
Conversely, when generating unfair feature, we randomly replaced
225 of the values from group 0 with uncorrelated values but only 75
of the values from group 1. Point-biserial correlations indicated the
expected patterns; the overall correlation with outcome for the fair
and unfair features were similar (𝑟𝑝𝑏 = .328 and 𝑟𝑝𝑏 = .345, respec-
tively), but the unfair feature’s correlation differed by group (𝑟𝑝𝑏
= .145 for group 0, 𝑟𝑝𝑏 = .554 for group 1) while the fair feature’s
correlation differed little (𝑟𝑝𝑏 = .290 vs. 𝑟𝑝𝑏 = .367).

3 RESULTS
We focus results on the research questions outlined in Introduc-
tion: Our Study. In this section, we describe our results as well
as the tests used to assess effectiveness of our method. We exam-
ine trends across datasets and classifiers, as well as the effect of
unfairness weight on accuracy and unfairness. Most importantly,
we demonstrate that our approach reduced unfairness for our test
datasets. We conclude by looking at how unfairness weight affects
the inclusion of specific features, and show that the sensitive feature
and unfair feature were selected less frequently as the unfairness
weight was increased.

3.1 Reduction in Unfairness (RQ1)
RQ1 asked whether the proposed method reduces unfairness. Over-
all, our method reduced unfairness in our datasets as measured
by our six definitions. For the Student Performance dataset, for
example, at unfairness weight 4 (i.e., where reducing unfairness is
approximately 4 times as important as accuracy) averaging across
all metrics, mean unfairness decreased 54% (0.215 to 0.123) for lo-
gistic regression, 55% (0.217 to 0.123) for Gaussian naïve Bayes, and
27% (0.158 to 0.121) for decision trees, when compared to unfairness
weight 0. This aligned with our expectations that decision trees,
which are robust to the presence of unnecessary features, would
still benefit from feature selection to decrease unfairness.

3.1.1 Effect of Unfairness Weight. As we increased the unfair-
ness weight, for the majority of unfairness metrics and classi-
fiers, the unfairness of predictions significantly decreased (as ex-
pected). Wemeasured the decrease statistically withMann-Whitney
U tests, given that unfairness values were ordinal but not normally-
distributed. In total, we ran 90 experiments per dataset, consisting
of each combination of 3 classifiers, 6 unfairness metrics, and 5
unfairness weights. Of these 90 experiments, 72 had a positive

unfairness weight (i.e., at least some unfairness penalty during fea-
ture selection). For the Simulated data, 72% (52 out of 72) of the
experiments yielded a significant decrease in unfairness relative
to the previous (1 unit smaller) unfairness weight. Findings were
similar for the Student Performance, Student Academics, and Adult
datasets, which had significant decreases for 58%, 56%, and 82% of
the experiments, respectively.

For each classifier, different unfairness metrics started off as
more or less unfair at unfairness weight = 0. This was expected,
since each metric measures a different aspect of unfairness that
may be more or less present in a particular dataset. The relevance
of particular metrics can be observed in the Adult dataset, shown
in Figure 1. Unfairness was most evident in terms of Treatment
Equality and Statistical Parity measures, but the unfairness was
greatly reduced by our feature selection method without excessive
decrease in accuracy. At unfairness weight 1 for logistic regression
using Statistical Parity, unfairness decreased 60% (from 0.183 to
0.098) while accuracy only decreased 6% (from 0.759 to 0.716). This
reduction in unfairness brought statistical parity to between 5%
and 12% at unfairness weight 1 for all three models.

For most of the datasets, one or more metrics showed relatively
low initial unfairness and maintained that regardless of unfairness
weight. For example, overall accuracy equality had no statistical de-
crease, as measured by Mann-Whitney U tests, in unfairness for any
classifier applied to the Student Academics dataset. We observed
a similar resistance to the method across datasets and classifiers,
though for different unfairness metrics (Figure 2). In general, un-
fairness metrics were not reduced by our feature selection method
if unfairness was already relatively low according to that metric
before applying the method (i.e., when unfairness weight = 0).

In general, the most fair and unfair metrics tended to be consis-
tent across classifiers for a given dataset. For example, as can be
seen in Figure 1, statistical parity showed substantial unfairness
for the Adult dataset across all three classifiers. This is unsurpris-
ing, given that 30.38% of men, but only 10.93% of women, reported
earnings of more than $50K in the dataset.

3.1.2 Unfairness vs. Accuracy Relationship. As Figure 2 shows,
when the unfairness weight increased and unfairness decreased,
so did accuracy. Accuracy decrease was expected, because as we
constrained which features could be selected, there was less infor-
mation for the model to learn from. Previous work in fair learning
has demonstrated that some decrease in accuracy is unavoidable
[17, 18, 22]. In cases where dimensionality is a large problem, re-
ductions in accuracy may be alleviated because feature selection
is essential [44], but our datasets do not have a particularly large
number of features (e.g., more features than instances). Since we
had a limited number of features to choose from—22 for Student
Academics, 33 for Student Performance, 22 for Adult, and 3 for
the Simulated Data—we anticipated a loss of accuracy when we
constrained feature selection. We demonstrated the expected re-
duction in accuracy with our experimental results by showing that
accuracy and unfairness were moderately correlated. For the 80%
of metrics that were impacted by this approach, mean 𝑟 = .545 with
𝑝 < .01. As a demonstration of the correlation between accuracy
and unfairness, we plotted three metric and classifier combinations
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Figure 1: Three classifiers for the Adult dataset. These fig-
ures plot the mean of unfairness across 100 iterations using
each unfairness metric.

for the Student Academics dataset, as seen in Figure 3. These com-
binations are a decision tree using conditional procedure accuracy
(Figure 3a), logistic regression using total average equality (Figure
3c), and Gaussian naïve Bayes using treatment equality (Figure 3b).

For the remaining 20% of metrics, mean 𝑟 = -.081. The set of
metrics that did not have any correlation between accuracy and
unfairness were the same as the ones that were most resistant to
change using our method. We hypothesize that is because they
started with low unfairness. For example, for the Simulated data,
statistical parity had weak or no correlation between accuracy and
unfairness for all classifiers. But, both accuracy and unfairness were
unaffected by the change in unfairness weight (Figure 2).

For the Student Academics and Simulated data at unfairness
weight 1, all three classifiers had a “best” or “worst” metric (or
both). That is to say, a metric existed that had both the highest
unfairness and lowest accuracy or lowest unfairness and highest
accuracy. These metrics were the same as the ones that were the
least or most unfair with the baseline classifier (unfairness weight
of 0). In Figure 2, we can see that for logistic regression on the
Simulated data, the best metric was statistical parity, while the
worst was treatment equality. For decision trees on the Student
Academics data, the best metric was overall accuracy equality, while
the worst was treatment equality.

As unfairness weight was increased to 2 or more, however, the
trend of a best or worst metric broke. At unfairness weights 3 and
4, some unfairness metric results were mixed, exhibiting the least
unfairness and the worst accuracy—for example in the treatment
equality results for the Simulated data, as seen in Figure 2. This
could be attributed to an over-optimization for unfairness as the
unfairness weight was increased, sacrificing accuracy in the process.
In comparison, some metrics appeared to achieve results that bal-
anced unfairness and accuracy at weights 2 and 3. At these weights
some metrics were able to attain very similar accuracy to weight
0, with significantly less unfairness. For example, this decrease
in unfairness occurred with logistic regression and the statistical
parity metric for the Simulated data (Figure 2). Thus, results show
that some amount of human intervention is still likely necessary
to determine what unfairness weight is appropriate for a specific
application, since the results will vary depending on the dataset
and model.

We previously mentioned that some unfairness metrics remained
unaffected by our feature selection approach for specific combina-
tions of datasets and classifiers. The metrics that were resistant to
change were resistant in terms of both accuracy and unfairness.
Generally, we saw that the unfairness metric that changed the least
was frequently the least unfair at the beginning. Moreover, when
the method failed to reduce unfairness it also did not reduce accu-
racy. Thus, there was no cost to trying this approach. For example,
conditional use accuracy as well as statistical parity for both logistic
regression and Gaussian naïve Bayes were unaffected by changing
the unfairness weight for the Simulated data (Figure 2). Accuracy
was also unaffected, and there was no correlation for statistical
parity between accuracy and unfairness. These specific metrics
were also the least unfair from the beginning, ranking second and
first, respectively, for the Simulated data. In other words, when a
model was already fair and accurate, applying our method did not
produce worse results.
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Figure 2: All classifiers for the Simulated data. These figures plot themeanof unfairness or accuracy (AUC) across 100 iterations
using each unfairness metric.

3.2 Inclusion of Sensitive and Unfair Features
(RQ2)

RQ2 asked how the selection of the unfair feature and the sensitive
feature (group status) affected outcomes. Using Mann-Whitney
U tests, we found that both the unfair feature and the sensitive
feature were selected significantly less frequently as the unfairness

weight increased, for the Simulated data. We exclusively analyzed
the Simulated data for this research question, since we knew exactly
which features were fair and unfair, and in what way the unfair
feature was unfair.

We measured whether the sensitive feature was included in the
classifier less frequently for each increase (by 1) of the unfairness
weight. For the sensitive feature, 70% (51 out of 72) of unfairness
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Figure 3: Plots of correlation between accuracy and unfair-
ness for three combinations ofmetrics and classifiers for the
Student Academics dataset.

weight increases resulted in the sensitive feature being selected
significantly less frequently (𝑝 < .05). This result was across all
combinations of classifiers and metrics. The unfairness metrics that
did not exhibit a statistically significant decrease in selection of the
sensitive feature aligned with the ones that were also unaffected by

the method in general. Worth noting, however, is that there were
no metrics for which every single step was ineffective. For example,
for Gaussian naïve Bayes, optimizing for statistical parity did not
significantly affect the selection of the sensitive feature from un-
fairness weights 2 to 3 and 3 to 4, but did significantly change from
steps 0 to 1 and 1 to 2. For metrics that start with low unfairness,
increases in the unfairness weight may not effect change beyond a
certain point. In our results, weighting unfairness at all (i.e., weight
> 0) affected the selection of the sensitive feature. Beyond that,
however, we may have already made whatever intervention was
available to be made.

For the unfair feature, 64% (46 out of 72) of increases by 1 to
the unfairness weight resulted in the unfair feature being selected
significantly less frequently (𝑝 < .05). Similarly to the sensitive
feature, selection of the unfair feature was less affected by our fea-
ture selection method for unfairness metrics that did not decrease
significantly when the unfairness weight increased. In fact, there
was one instance where no effect was observed; statistical parity
with Gaussian naïve Bayes did not select the unfair feature with
any less frequency at any unfairness weight. Statistical parity was,
however, the metric that started out with low unfairness compared
to other metrics, so this finding aligned with our other findings
regarding resistant metrics.

4 LIMITATIONS AND FUTUREWORK
The experiments in this paper have a few limitations. First, two of
the publicly available datasets we analyzed were similar education-
related datasets, though education is not the only field to which
our method applies. We chose these datasets as examples because
education has a long history of looking at unfairness and bias (e.g.,
test unfairness), and many of our current formal definitions in
machine learning echo those defined in educational contexts [25].
The Adult dataset provided a baseline to other machine learning
work, but future work should explore our method in additional
fairness-sensitive domains, such as healthcare.

Second, our datasets were relatively small; most notably, the Sim-
ulated data had only three features. It was intentionally constructed
in this way to make the relationship between the selection of the un-
fair feature and the unfairness weight as clear as possible—however,
in the future we will evaluate this approach on datasets with more
features and thus a larger search space for feature selection.

Third, the method we described is based on wrapper feature
selection, which integrated well with our approach and is appro-
priate for smaller datasets. Wrapper feature selection, however, is
slow compared with other feature selection methods because of
its computational complexity [40]. Furthermore, wrapper feature
selection is not the only way to select features. As such, future work
could apply our method to other feature selection methods, such
as RELIEF-F [32] or model-based methods [1].

5 CONCLUSION
We devised an approach to fair feature selection, inspired by the
general framework of fair model building. In particular, we intro-
duced the notion of an unfairness weight in feature selection, which
indicates how heavily to weight unfairness versus accuracy when
measuring the marginal benefit of adding a new feature to a model.



Our goal was to maintain accuracy while reducing unfairness, as
defined by six common statistical definitions.

We demonstrated that our method decreased unfairness. More-
over, our method does not reduce accuracy when fairness will not
be improved. There is, however, an inevitable trade-off between im-
proved fairness and accuracy, which we showed by measuring the
correlation of accuracy and unfairness. By automating the selection
of features to produce fairer predictions, we provide an approach
that improves model fairness by eliminating decisions based on
unfair information. Because this approach affects feature selection
only, it can also be combined with other common fairness methods,
such as pre-processing. As long as the desired definition of unfair-
ness is known, it can be applied to this approach. Moreover, our
method could easily be extended to other statistical unfairness defi-
nitions beyond the six that we tested. This procedure is an effective
approach to constructing classifiers that both reduce unfairness and
are less likely to include unfair features in the modeling process.
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